Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.269
Filtrar
1.
Bioorg Med Chem Lett ; 105: 129741, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599296

RESUMEN

ZJ-101, a structurally simplified analog of marine natural product superstolide A, was previously designed and synthesized in our laboratory. In the present study four new analogs of ZJ-101 were designed and synthesized to investigate the structure-activity relationship of the acetamide moiety of the molecule. The biological evaluation showed that the amide moiety is important for the molecule's anticancer activity. Replacing the amide with other functional groups such as a sulfonamide group, a carbamate group, and a urea group resulted in the decrease in anticancer activity.


Asunto(s)
Amidas , Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Humanos , Amidas/química , Amidas/farmacología , Amidas/síntesis química , Línea Celular Tumoral , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Macrólidos/química , Macrólidos/farmacología , Macrólidos/síntesis química , Relación Dosis-Respuesta a Droga
2.
Phytochemistry ; 222: 114101, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636687

RESUMEN

Bafilomycins are macrocyclic polyketides with intriguing structures and therapeutic value. Genomic analysis of Streptomyces sp. SCSIO 66814 revealed a type I polyketide synthase biosynthetic gene cluster (BGC), namely blm, which encoded bafilomycins and featured rich post-modification genes. The One strain many compounds (OSMAC) strategy led to the discovery of six compounds related to the blm BGC from the strain, including two previously undescribed 6,6-spiroketal polyketides, streptospirodienoic acids D (1) and E (2), and four known bafilomycins, bafilomycins P (3), Q (4), D (5), and G (6). The structures of 1 and 2 were determined by extensive spectroscopic analysis, quantum calculation, and biosynthetic analysis. Additionally, the absolute configurations of the 6/5/5 tricyclic ring moiety containing six consecutive chiral carbons in the putative structures of 3 and 4 were corrected through NOE analysis, DP4+ calculation, and single-crystal X-ray diffraction data. Bioinformatic analysis uncovered a plausible biosynthetic pathway for compounds 1-6, indicating that both streptospirodienoic acids and bafilomycins were derived from the same blm BGC. Additionally, sequence analysis revealed that the KR domains of module 2 from blm BGC was B1-type, further supporting the configurations of 1-4. Notably, compounds 3 and 4 displayed significant cytotoxic activities against A-549 human non-small cell lung cancer cells and HCT-116 human colon cancer cells.


Asunto(s)
Policétidos , Streptomyces , Streptomyces/química , Streptomyces/metabolismo , Streptomyces/genética , Policétidos/química , Policétidos/farmacología , Policétidos/aislamiento & purificación , Humanos , Estereoisomerismo , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Macrólidos/química , Macrólidos/farmacología , Macrólidos/aislamiento & purificación , Macrólidos/metabolismo , Proliferación Celular/efectos de los fármacos , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Compuestos de Espiro/aislamiento & purificación , Relación Estructura-Actividad , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/genética , Línea Celular Tumoral , Genoma Bacteriano , Familia de Multigenes
3.
Chem Commun (Camb) ; 60(37): 4910-4913, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38623638

RESUMEN

Several natural cytotoxic C2-symmetric bis-lactones, such as swinholide A and rhizopodin, sequester actin dimer from the actin network and potently inhibit actin dynamics. To develop new protein-protein interaction (PPI) modulators, we synthesized structurally simplified actin-binding side-chain dimers of antitumor macrolide aplyronine A. By fixing the two side-chains closer than those of rhizopodin, the C4 linker analog depolymerized filamentous actin more potently than natural aplyronines. Cross-link experiments revealed that actin dimer was formed by treatment with the C4 linker analog. Molecular dynamics simulations showed that this analog significantly changed the interaction and spatial arrangement of the two actins compared to those in rhizopodin to provide a highly distorted and twisted orientation in the complex. Our study may promote the development of PPI-based anticancer and other drug leads related to cytoskeletal dynamics.


Asunto(s)
Actinas , Macrólidos , Simulación de Dinámica Molecular , Macrólidos/química , Macrólidos/farmacología , Macrólidos/síntesis química , Actinas/metabolismo , Actinas/química , Multimerización de Proteína/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Dimerización , Humanos
4.
J Am Chem Soc ; 146(12): 8456-8463, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38479352

RESUMEN

Here we report the first total synthesis of the marine macrolide salarin C, a potent anticancer agent, and demonstrate the biomimetic oxidation-Wasserman rearrangement to access salarin A. This synthesis relies on L-proline catalysis to install a chlorohydrin function that masks the sensitive C16-C17 epoxide and potentially mimics the biosynthesis of these compounds where a related chlorohydrin may yield both THF- and epoxide-containing salarins. Additional and key features of the synthesis include (i) macrocycle formation via ring-closing metathesis, (ii) macrocyclic substrate-controlled epoxidation of the C12-C13 allylic alcohol, and (iii) a late-stage Julia-Kocienski olefination to install the side chain. Importantly, this work provides a platform for the synthesis of other salarins and analogues of these potentially important anticancer natural products.


Asunto(s)
Antineoplásicos , Clorhidrinas , Estereoisomerismo , Macrólidos/química , Compuestos Epoxi/química
5.
Arch Biochem Biophys ; 754: 109950, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430969

RESUMEN

The cytochrome P450 family of heme metalloenzymes (CYPs) catalyse important biological monooxygenation reactions. Mycobacterium marinum contains a gene encoding a CYP105Q4 enzyme of unknown function. Other members of the CYP105 CYP family have key roles in bacterial metabolism including the synthesis of secondary metabolites. We produced and purified the cytochrome P450 enzyme CYP105Q4 to enable its characterization. Several nitrogen-donor atom-containing ligands were found to bind to CYP105Q4 generating type II changes in the UV-vis absorbance spectrum. Based on the UV-vis absorbance spectra none of the potential substrate ligands we tested with CYP105Q4 were able to displace the sixth distal aqua ligand from the heme, though there was evidence for binding of oleic acid and amphotericin B. The crystal structure of CYP105Q4 in the substrate-free form was determined in an open conformation. A computational structural similarity search (Dali) was used to find the most closely related characterized relatives within the CYP105 family. The structure of CYP105Q4 enzyme was compared to the GfsF CYP enzyme from Streptomyces graminofaciens which is involved in the biosynthesis of a macrolide polyketide. This structural comparison to GfsF revealed conformational changes in the helices and loops near the entrance to the substrate access channel. A disordered B/C loop region, usually involved in substrate recognition, was also observed.


Asunto(s)
Mycobacterium marinum , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Estructura Secundaria de Proteína , Macrólidos/química , Macrólidos/metabolismo , Hemo/química , Cristalografía por Rayos X
6.
J Nat Prod ; 87(4): 1131-1149, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38555526

RESUMEN

Herein, the first total synthesis of natural 13-hydroxy-14-deoxyoxacyclododecindione along with the revision of the proposed configuration is reported. This natural product, initially discovered in 2018, belongs to the oxacyclododecindione family, renowned for their remarkable anti-inflammatory and antifibrotic activities. The synthetic route involves an esterification/Friedel-Crafts-acylation approach and uses various triol fragments. It allows the preparation of different stereoisomers, including the (revised) natural product, two threo-derivatives, and two Z-isomers of the endocyclic C═C double bond. Furthermore, a late-stage inversion of the C-13 stereocenter could transform the originally proposed structure into the revised natural product. With this comprehensive set of compounds and the previously prepared (13R,14S,15R)-isomer, deeper insights into their structural properties and biological activities were obtained. A detailed analysis of the final macrolactones using spectroscopy (NMR, IR, UV-vis) and X-ray crystallography gave new insights such as the significance of the optical rotation for the elucidation of their configuration and the light-induced E/Z double-bond photoisomerization. The pharmacological potential of the compounds was underlined by remarkably low IC50 values in biological assays addressing the inhibition of cellular inflammatory responses.


Asunto(s)
Antiinflamatorios , Macrólidos , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/síntesis química , Lactonas/farmacología , Lactonas/química , Lactonas/síntesis química , Estructura Molecular , Estereoisomerismo , Macrólidos/química , Macrólidos/farmacología
7.
Eur J Med Chem ; 267: 116181, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38354519

RESUMEN

A series of novel C11 substituted 14-membered 2-fluoro ketolides were synthesized and evaluated for their antibacterial activity against erythromycin-resistant and erythromycin-susceptible clinical isolates and strains from ATCC. The overall antibacterial spectra of the semi-synthetic antibiotics are similar to that of telithromycin (TEL) and most of them exhibited excellent activity against Gram-positive bacteria (S. epidermidis, S. pneumoniae, S. aureus) and several Gram-negative bacteria (M. catarrhalis, H. influenza). Compounds 11c, 11g, 11h, 11q, 12a, 12b, 12d and 12e displayed 4-16 fold more potency than TEL against all the tested erythromycin-resistant S. epidermidis strains and S. pneumonia SPN19-8 and SPN19-8. Compounds 11b, 11c, 11e, 11g, 11h, 11q, 12a, 12b and 12c showed at least 8 fold potency than TEL against erythromycin-resistant M. catarrhalis BCA19-5 and BCA19-6. Molecular docking suggested compound 12d oriented the macrolide ring and side chain similarly to solithromycin (SOL). Noticeably an additional hydrogen bond was observed between the Lys90 residue of ribosome protein L22 and the carbamate group at the C11 position, which might provide a rational explanation for the enhanced antibacterial activity of target compounds. Therefore this research would offer a new perspective for further structural optimization of the C11 side chain. Based on the results of antibacterial activity, cytotoxicity and structural diversity, 5 compounds (11a, 11b, 11h, 12d and 12i) were selected for the stability testing of human liver microsomes and compound 11a exhibited preferable metabolic stability.


Asunto(s)
Cetólidos , Humanos , Staphylococcus aureus , Simulación del Acoplamiento Molecular , Pruebas de Sensibilidad Microbiana , Macrólidos/química , Eritromicina , Antibacterianos/química , Relación Estructura-Actividad , Streptococcus pneumoniae
8.
Chemistry ; 30(27): e202400471, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38407454

RESUMEN

Amphidinolides C, F, and U, including C2-C4 analogs, are highly cytotoxic marine macrolides, mainly isolated from dinoflagellates of the genus Amphidinium. All these polyketides share a 75 % or more similar structure, highlighted by a macrolactone ring, at least one trans-2,5-substituted-THF motif and a characteristic polyenic side chain. From their isolation and absolute configurational assignment, the total synthesis of these marine macrolides represented an intense challenge to the organic synthesis community over the last 15 years, with around 14 research groups engaged in this inspiring task. In the first part of this review, we present the different approaches to the isolation and characterization of these natural products, including the most recent analogs, which may cast doubt on the biogenetic origin of these compounds. The various synthetic approaches to the total synthesis of C, F, and U amphidinolides are presented in a second part, focusing on key reactions and/or innovative strategies. The review concludes in a third section summarizing the successful approaches leading to the total synthesis of one of the members of this amphidinolide subfamily.


Asunto(s)
Productos Biológicos , Dinoflagelados , Macrólidos , Macrólidos/síntesis química , Macrólidos/química , Dinoflagelados/química , Productos Biológicos/química , Productos Biológicos/síntesis química , Estereoisomerismo , Anfidinólidos
9.
J Nat Prod ; 86(11): 2529-2538, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37945375

RESUMEN

Akunolides A (1), B (2), C (3), and D (4), new macrolide glycosides, were isolated from a marine Okeania sp. cyanobacterium. Their structures were elucidated by spectroscopic analyses and derivatization reactions. Akunolides A-D (1-4) are classified as 16-membered macrolide glycosides, which are relatively rare structures for marine cyanobacterium-derived natural products. Akunolides A-D (1-4) showed moderate antitrypanosomal activities against Trypanosoma brucei rhodesiense, with IC50 values ranging from 11 to 14 µM. Furthermore, akunolides A (1) and C (3) exhibited no cytotoxicity against normal human WI-38 cells even at a concentration of 150 µM.


Asunto(s)
Cianobacterias , Macrólidos , Humanos , Macrólidos/química , Glicósidos/química , Cianobacterias/química , Línea Celular , Estructura Molecular
10.
Org Lett ; 25(43): 7827-7831, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37856450

RESUMEN

A convergent route for the asymmetric total synthesis of antibacterial macrolide sorangiolide A has been developed for the first time. The key feature of this synthesis includes Krische iridium-catalyzed anti-diastereoselective carbonyl crotylation, Crimmins acetate aldol, Yamaguchi esterification, Julia-Kocienski olefination, Horner-Wadsworth-Emmons olefination, and ring-closing metathesis. The origin of the low intensity of the 13C{1H} NMR signals of the C1 and C2 centers of the natural product has been investigated, disclosing possible forms of existence for the natural product in the solution phase.


Asunto(s)
Productos Biológicos , Macrólidos , Macrólidos/química , Estereoisomerismo , Esterificación , Antibacterianos/farmacología , Estructura Molecular
11.
Trends Microbiol ; 31(12): 1199-1201, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37689489

RESUMEN

Antibiotics often contain ester bonds. The macrocyclic lactones of macrolides are pre-eminent examples in which ester bonds are essential to the form and function of antibiotics. Bacterial macrolide esterases that hydrolyze these macrocyclic lactones to confer antimicrobial resistance (AMR) are the topic of this forum. We provide insight into their role in agricultural systems and discuss their emergence and their potential extensibility to bioremediation efforts.


Asunto(s)
Esterasas , Macrólidos , Macrólidos/química , Antibacterianos/farmacología , Antibacterianos/química , Lactonas , Ésteres , Farmacorresistencia Bacteriana
12.
ChemMedChem ; 18(19): e202300292, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37552215

RESUMEN

Through an understanding of the conformational preferences of the polyketide natural product (-)-zampanolide, and the structural motifs that control these preferences, we developed a linear zampanolide analogue that exhibits potent cytotoxicity against cancer cell lines. This discovery provides a set of three structural handles for further structure-activity relationship (SAR) studies of this potent microtubule-stabilizing agent. Moreover, it provides additional evidence of the complex relationship between ligand preorganization, conformational flexibility, and biological potency. In contrast to medicinal chemistry dogma, these results demonstrate that increased overall conformational flexibility is not necessarily detrimental to protein binding affinity and biological activity.


Asunto(s)
Macrólidos , Policétidos , Macrólidos/química , Conformación Molecular , Policétidos/química , Relación Estructura-Actividad
13.
Molecules ; 28(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446910

RESUMEN

Amphidinolides are a family of more than forty macrolides of varying sizes and complex structures isolated from dinoflagellates of the genus Amphidinium. Although all of them display potent-to-moderate cytotoxicity, their full bioactivity profile and mode of action have not been fully investigated. Access to enough material is needed for these studies, but samples of these compounds are limited due to the minute amounts that can only be obtained by either large-scale cultivation of the organism that produces them or by total synthesis. Of all the amphidinolides known to date, only the targets of five of them (B1, H1, J, K, and X) have been examined and all have been found to interact with actin, a crucial cytoskeletal protein. This paper reviews what is currently known about actin-interacting amphidinolides, with a focus on the research of our group. Amphidinolides J and X are F-actin destabilizers, whereas Amphidinolides H1 and K stabilize actin filaments, likely via different mechanisms. More precise details of the interaction between amphidinolides and actin are missing.


Asunto(s)
Actinas , Dinoflagelados , Estructura Molecular , Macrólidos/química
14.
J Org Chem ; 88(15): 10996-11002, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37471139

RESUMEN

Enigmazole B (1) and four new analogues, cis-enigmazole B (2), dehydroenigmazole B (3), enigmimide B (4), and enigmimide A (5), were isolated from the marine sponge Cinachyrella enigmatica. Their planar structures were elucidated by detailed NMR and MS data analyses, which established 1-3 to be oxazole-substituted 18-membered phosphomacrolides, while 4 and 5 were oxazole ring-opened congeners. The relative and absolute configurations in 1 were determined by a combination of chemical transformations and spectroscopic analyses. Photooxidation of the oxazole moiety in 1 gave enigmimide B (4), thus establishing that 4 has the same absolute configuration of 1. Enigmazole B (1) along with analogues 2 and 3 showed cytotoxicity against murine IC-2 mast cells with IC50 values of 3.6-7.0 µM. The enigmimides (4 and 5) and dephosphoenigmazoles did not show cytotoxicity (IC50 > 10 µM), implying that both the oxazole moiety and the phosphate group are necessary for the cytotoxicity of the enigmazole class macrolides.


Asunto(s)
Poríferos , Animales , Ratones , Poríferos/química , Macrólidos/química , Oxazoles/farmacología , Oxazoles/química , Antibacterianos , Estructura Molecular
15.
Bioorg Chem ; 138: 106599, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37320913

RESUMEN

Genomic bioinformatics analysis identified a bafilomycin biosynthetic gene cluster (named bfl) in the deepsea-derived S. samsunensis OUCT16-12, from which two new (1 and 2, named bafilomycins R and S) along with four known (3-6) bafilomycins were targetly obtained. The structure of 3 was clearly identified for the first time, thus named bafilomycin T herein. Differ from the fumarate substitution at C-21 of known bafilomycins, its location on C-23 is a unique feature of 1 and 2. The stereochemistry of the compounds was established based on NOE correlations, ketoreductase (KR)-types in PKS modules of bfl, and ECD calculations. Moreover, a detailed biosynthetic model of 1-6 in S. samsunensis OUCT16-12 was provided based on the gene function prediction and sequence identity. Compared with the positive control doxorubicin, 1-6 showed more potent antiproliferative activities against drug-resistant lung cancer cell line A549-Taxol, with IC50 values ranging from 0.07 µM to 1.79 µM, which arrested cell cycle in G0/G1 phase to hinder proliferation.


Asunto(s)
Macrólidos , Streptomyces , Macrólidos/química , Streptomyces/química , Biología Computacional , Metilcelulosa/metabolismo , Familia de Multigenes
16.
Mar Drugs ; 21(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37367692

RESUMEN

Marinolides A and B, two new 24- and 26-membered bacterial macrolactones, were isolated from the marine-derived actinobacterium AJS-327 and their stereostructures initially assigned by bioinformatic data analysis. Macrolactones typically possess complex stereochemistry, the assignments of which have been one of the most difficult undertakings in natural products chemistry, and in most cases, the use of X-ray diffraction methods and total synthesis have been the major methods of assigning their absolute configurations. More recently, however, it has become apparent that the integration of bioinformatic data is growing in utility to assign absolute configurations. Genome mining and bioinformatic analysis identified the 97 kb mld biosynthetic cluster harboring seven type I polyketide synthases. A detailed bioinformatic investigation of the ketoreductase and enoylreductase domains within the multimodular polyketide synthases, coupled with NMR and X-ray diffraction data, allowed for the absolute configurations of marinolides A and B to be determined. While using bioinformatics to assign the relative and absolute configurations of natural products has high potential, this method must be coupled with full NMR-based analysis to both confirm bioinformatic assignments as well as any additional modifications that occur during biosynthesis.


Asunto(s)
Productos Biológicos , Sintasas Poliquetidas , Sintasas Poliquetidas/genética , Macrólidos/química , Biología Computacional , Bacterias
17.
Toxicon ; 231: 107159, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37210046

RESUMEN

Goniodomin A (GDA) is a polyketide macrolide produced by multiple species of the marine dinoflagellate genus Alexandrium. GDA is unusual in that it undergoes cleavage of the ester linkage under mild conditions to give mixtures of seco acids (GDA-sa). Ring-opening occurs even in pure water although the rate of cleavage accelerates with increasing pH. The seco acids exist as a dynamic mixture of structural and stereo isomers which is only partially separable by chromatography. Freshly prepared seco acids show only end absorption in the UV spectrum but a gradual bathochromic change occurs, which is consistent with formation of α,ß-unsaturated ketones. Use of NMR and crystallography is precluded for structure elucidation. Nevertheless, structural assignments can be made by mass spectrometric techniques. Retro-Diels-Alder fragmentation has been of value for independently characterizing the head and tail regions of the seco acids. The chemical transformations of GDA revealed in the current studies help clarify observations made on laboratory cultures and in the natural environment. GDA has been found to reside mainly within the algal cells while the seco acids are mainly external with the transformation of GDA to the seco acids occurring largely outside the cells. This relationship, plus the fact that GDA is short-lived in growth medium whereas GDA-sa is long-lived, suggests that the toxicological properties of GDA-sa in its natural environment are more important for the survival of the Alexandrium spp. than those of GDA. The structural similarity of GDA-sa to that of monensin is noted. Monensin has strong antimicrobial properties, attributed to its ability to transport sodium ions across cell membranes. We propose that toxic properties of GDA may primarily be due to the ability of GDA-sa to mediate metal ion transport across cell membranes of predator organisms.


Asunto(s)
Macrólidos , Monensina , Espectrometría de Masas , Macrólidos/química , Éteres/química
18.
J Antibiot (Tokyo) ; 76(9): 503-510, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37208457

RESUMEN

Three new 22-membered polyol macrolides, dactylides A-C (1-3), were isolated from Dactylosporangium aurantiacum ATCC 23491 employing repeated chromatographic separations, and their structures were established based on detailed analysis of NMR and MS data. The relative configurations at the stereocenters were established via vicinal 1H-1H coupling constants, NOE correlations, and by application of Kishi's universal NMR database. In order to get insights into the biosynthetic pathway of 1-3, the genome sequence of the producer strain D. aurantiacum was obtained and the putative biosynthetic gene cluster encoding their biosynthesis was identified through bioinformatic analysis using antiSMASH. Compounds 1-3 showed significant in-vitro antimycobacterial and cytotoxic activity.


Asunto(s)
Macrólidos , Micromonosporaceae , Macrólidos/química , Antibacterianos/química , Espectroscopía de Resonancia Magnética
19.
Molecules ; 28(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37110828

RESUMEN

Lobophorins (LOBs) are a growing family of spirotetronate natural products with significant cytotoxicity, anti-inflammatory, and antibacterial activities. Herein, we report the transwell-based discovery of Streptomyces sp. CB09030 from a panel of 16 in-house Streptomyces strains, which has significant anti-mycobacterial activity and produces LOB A (1), LOB B (2), and LOB H8 (3). Genome sequencing and bioinformatic analyses revealed the potential biosynthetic gene cluster (BGC) for 1-3, which is highly homologous with the reported BGCs for LOBs. However, the glycosyltransferase LobG1 in S. sp. CB09030 has certain point mutations compared to the reported LobG1. Finally, LOB analogue 4 (O-ß-D-kijanosyl-(1→17)-kijanolide) was obtained through an acid-catalyzed hydrolysis of 2. Compounds 1-4 showed different antibacterial activities against Mycobacterium smegmatis and Bacillus subtilis, which revealed the varying roles of different sugars in their antibacterial activities.


Asunto(s)
Streptomyces , Streptomyces/química , Macrólidos/química , Antibacterianos/química , Secuencia de Bases , Familia de Multigenes
20.
Chemistry ; 29(36): e202300703, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37057902

RESUMEN

We describe the synthesis and biochemical and cellular profiling of five partially reduced or demethylated analogs of the marine macrolide (-)-zampanolide (ZMP). These analogs were derived from 13-desmethylene-(-)-zampanolide (DM-ZMP), which is an equally potent cancer cell growth inhibitor as ZMP. Key steps in the synthesis of all compounds were the formation of the dioxabicyclo[15.3.1]heneicosane core by an intramolecular HWE reaction (67-95 % yield) and a stereoselective aza-aldol reaction with an (S)-BINOL-derived sorbamide transfer complex, to establish the C(20) stereocenter (24-71 % yield). As the sole exception, for the 5-desmethyl macrocycle, ring-closure relied on macrolactonization; however, elaboration of the macrocyclization product into the corresponding zampanolide analog was unsuccessful. All modifications led to reduced cellular activity and lowered microtubule-binding affinity compared to DM-ZMP, albeit to a different extent. For compounds incorporating the reactive enone moiety of ZMP, IC50 values for cancer cell growth inhibition varied between 5 and 133 nM, compared to 1-12 nM for DM-ZMP. Reduction of the enone double bond led to a several hundred-fold loss in growth inhibition. The cellular potency of 2,3-dihydro-13-desmethylene zampanolide, as the most potent analog identified, remained within a ninefold range of that of DM-ZMP.


Asunto(s)
Macrólidos , Microtúbulos , Macrólidos/química , Relación Estructura-Actividad , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...